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Self diffusion, shear viscosity and thermal conductivity of carbon dioxide are determined fully ab
initio using two different intermolecular potential energy surfaces. These properties are calculated
using the time-correlation formalism in classical equilibrium molecular dynamics simulations. The
self diffusion constant is in addition determined from the Einstein relation. For the shear viscosity we
use two different models of momentum localization: at the center of mass of the molecules, or at
each atom. For the thermal conductivity we apply the formulae for rigid and flexible molecules as-
suming energy localization at the center of mass of the molecules. The results obtained are in good
agreement with experiment. A fully ab initio calculation of transport properties allows for a predic-
tion of these quantities even at state points where experiments are hardly possible.
Key words: Carbon dioxide; Transport properties; Ab initio calculations; Self diffusion; Shear vis-
cosity; Thermal conductivity; Supercritical state.

In recent years, carbon dioxide has gained importance as a solvent for organic sub-
stances (see for example refs1–5). The physical properties of fluid carbon dioxide are of
crucial interest for many industrial processes. For example, where chemical reactions
are performed in a large vessel, accurate knowledge of the thermal conductivity is of
great importance. In this article we report calculations of the transport properties of
fluid CO2, carried out from pure theory. Such calculations permit the accurate estima-
tion of these quantities over a wide range of phase points, including regions in which
experimental determination is impractical.
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COMPUTATIONAL DETAILS

Molecular dynamics simulations of CO2 in the supercritical state were performed, ap-
plying two ab initio pair potentials calculated previously in our group6,7. These poten-
tials were calculated using a (11s6p2d)/[5s4p2d] and (13s8p4d1f)/[8s6p4d1f] basis,
respectively, including electron correlation by second order Møller–Plesset perturbation
theory. In the construction of the two potentials, the interactions were separated into
two parts: an intermolecular pair potential, and an intramolecular potential. The inter-
molecular contribution was determined using pairs of molecules fixed in their equili-
brium configurations, calculating the dimer interaction energy at the level of theory
described above. The intramolecular contribution was then approximated using a har-
monic potential, calibrated to the vibrational frequencies of an isolated molecule. These
frequencies were again determined using quantum chemical calculations at the same
level of theory. For a full description we refer the reader to refs6,7.

For the molecular dynamics simulations, 216 flexible molecules were placed in a
cubic box, and periodic boundary conditions were applied. The equations of motion
were solved using the leap-frog version of the Verlet algorithm8. In order to save com-
puter time a multiple time step procedure8 was applied. Whereas the intramolecular
forces were calculated at each time step, the intermolecular forces were evaluated only
every third step, and in between were approximated using a second order Taylor expan-
sion.

The transport properties were determined using the time-correlation formalism. In
general, a transport quantity K is described by9

K = CK ∫ 
0

∞

dt 〈A
.

K(t)A
.

K(0)〉  , (1)

where CK is a specific constant for each transport quantity and A
.

K is the corresponding
current (see below). For the shear viscosity and thermal conductivity three different
models can be applied. Despite the fact that we deal with flexible molecules, the formu-
lae for rigid molecules10 can be applied while considering only the translation and rota-
tion of a molecule. Alternatively, expressions for flexible molecules can be derived
assuming the total energy and momentum to be localized at the center of mass of each
molecule, or at every atom. These three models will in the following be called rigid,
molecular and atomic model, respectively. In the case of the shear viscosity the rigid
model and the molecular model are identical. For the thermal conductivity the three
expressions are different, but the statistical error of the atomic model is of the same size
as the result itself. Therefore, we give the thermal conductivity only for the rigid and
the molecular model.

The simulations were performed with a time step of 0.25 fs and over a total time of
45 ps. To generate a reasonable statistical sample the simulations were run seven times
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with changed numerics, i.e. altogether over a total of 315 ps. In order to evaluate the
transport properties in the simulation the autocorrelation functions were recorded every
3 fs. To obtain good convergence of the integrals the functions had to be determined
over a time interval of 1.8 ps for the diffusion and the thermal conductivity, and 1.2 ps
for the shear viscosity. A new function can already be recorded after the previous func-
tion has decayed by a factor of 1/e, i.e. after 0.225 ps in the case of diffusion, after
0.120 ps for the thermal conductivity, and after 0.075 ps for the shear viscosity. This
yielded per batch a total of 200 functions for the diffusion, 375 for the thermal conduc-
tivity, and 600 for the shear viscosity, respectively.

Although the approximation of the total potential energy as a sum over pair interac-
tions is widely employed, the neglect of many-body interactions is sometimes thought
to be the source of certain deviations between calculated and measured values. In the
fluid state, and when the interactions are weak, our experience has shown that a high
quality pair potential can already produce results consistent with experiment, indicating
that contributions to the transport properties due to many-body effects are quite small
in these systems. For example, transport properties of argon11 and neon12, determined
using molecular dynamics simulations with ab initio pair potentials, were found with-
out exception to agree with experiment within the statistical errors of 5–10%. A study
of fluid argon by Lee and Cummings13, in which the effect of three-body forces on the
viscosity was investigated, showed that including the three-body interactions decreased
the values by about 3%. Although these findings are not directly transferable to the case
of CO2, they do give an indication that any deviation due to the neglect of many-body
effects is unlikely to be significant in this study, given the quite large statistical uncer-
tainty.

RESULTS AND DISCUSSION

Table I gives the results for all calculated transport properties at a temperature T =
321.3 K and a density ρ = 18 249 mol m–3, Table II those at temperature T = 302.9 K
and density ρ = 23 389 mol m–3, and Table III those at temperature T = 300.6 K and
density ρ = 18 249 mol m–3. These points were chosen because experimental results
were available for all three properties. The experimental values for the self diffusion
constant in Table I and Table III were interpolated from ref.14, whereas the one in Table II
had to be extrapolated. The errors given for the experimental values for the self diffu-
sion are estimated from the interpolation and extrapolation procedure. The experimen-
tal values for the shear viscosity and the thermal conductivity are taken from ref.15.
Note that the self diffusion coefficients were measured using 13CO2 whereas, for con-
sistency with all of the other experimental data, our simulations were performed with
12CO2. This could cause a deviation of up to two percent between our simulated self
diffusion coefficients and the experimentally obtained values reported in ref.14.
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Diffusion

The diffusion describes the transport of particles. The corresponding current is there-
fore the velocity of the center of mass of the molecule. The diffusion constant D is
given by an integral over time16

D = 
1
3
 ∫ 
0

∞

dt 〈Vi(t)Vi(0)〉  , (2)

TABLE II
Simulated and experimental transport properties at density ρ = 23 389 mol m–3 using the two ab initio
potentials

Property Equation [5s4p2d] [8s6p4d1f] Experimental

Tsim, K 302.5 ± 2.6 303.3 ± 1.1 302.9

D, 10–6 cm2 s–1
correlation (Eq. (2))  92 ± 3  96 ± 1

108 ± 6
Einstein (Eq. (3))  97 ± 2  94 ± 3

λ, 10–3 J m–1 s–1 K–1
flexible (Eq. (8))  189 ± 20  137 ± 19

136rigid (ref.10)  149 ± 11  151 ± 11

η, 10–6 Pa s–1
molecular (Eq. (12)) 151 ± 8 145 ± 9

130atomic (Eq. (13)) 128 ± 6 148 ± 6

TABLE I
Simulated and experimental transport properties at density ρ = 18 249 mol m–3 using the two ab
initio potentials

Property Equation [5s4p2d] [8s6p4d1f] Experimental

Tsim, K 320.9 ± 1.1 321.6 ± 1.2 321.3

D, 10–6 cm2 s–1
correlation (Eq. (2)) 165 ± 1 176 ± 1

209 ± 2
Einstein (Eq. (3)) 174 ± 2 184 ± 3

λ, 10–3 J m–1 s–1 K–1
flexible (Eq. (8))   89 ± 17   89 ± 10

89rigid (ref.10)  86 ± 3  87 ± 4

η, 10–6 Pa s–1
molecular (Eq. (12))  87 ± 5  73 ± 3

71atomic (Eq. (13))  96 ± 6  86 ± 6
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with Vi the center of mass velocity of molecule i, and 〈…〉 indicates the average over
all molecules and all correlation functions recorded during the simulation. Alterna-
tively, the diffusion constant can be determined from the Einstein relation

D = lim
t → ∞

 
1
6t

 〈|Ri(t) − Ri(0)|2〉  , (3)

where Ri is the center of mass coordinate of molecule i. In contrast to Eq. (2), the
average 〈…〉 is here only over all molecules.

 Compared to experiment, the simulated results are roughly 15% too small. There
seems to be a slight improvement going from the [5s4p2d] to the [8s6p4d1f] potential.
In general, the Einstein relation yields results closer to the experiment although the
statistical error of these results is slightly larger than that of those obtained from Eq.
(2). We do not have any explanation for this behaviour. Results with similar deviations
from experiment were obtained by Tsuzuki et al.17. They performed simulations with
rigid molecules using an ab initio potential energy surface calculated in their group18.
Somewhat larger is the deviation obtained in earlier work by Böhm et al.19.

Thermal Conductivity

The thermal conductivity describes the transport of energy in a system. It is convenient
to define the quantity

Aλ = ∑ 
i = 1

Nmol

Ri Ei  , (4)

TABLE III
Simulated and experimental transport properties at density ρ = 18 249 mol m–3 using the two ab initio
potentials

Property Equation [5s4p2d] [8s6p4d1f] Experimental

Tsim, K 299.5 ± 1.1 301.6 ± 1.0 300.6

D, 10–6 cm2 s–1 correlation (Eq. (2)) 158 ± 2 163 ± 2
184 ± 5

Einstein (Eq. (3)) 162 ± 2 168 ± 3

λ, 10–3 J m–1 s–1 K–1
flexible (Eq. (8))   95 ± 17   93 ± 12

 89rigid (ref.10)   84 ± 5   78 ± 3 

η, 10–6 Pa s–1
molecular (Eq. (12))  70 ± 5  84 ± 5

 71atomic (Eq. (13))  84 ± 4 108 ± 8
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with Ri the center of mass coordinate and Ei the total energy of molecule i (see below).
The sum runs over all Nmol molecules. The corresponding current is the heat flux vector

j = 
1
V

 ∑ 
i = 1

Nmol

(R
.

i Ei − Ri E
.

i)  , (5)

where V denotes the volume of the system. The thermal conductivity λ is given by8

λ = 
V

kBT2 ∫ 
0

∞

dt 〈j(t)⋅j(0)〉 (6)

with kB Boltzmann constant and T the temperature. We assume the total energy Ei of a
molecule to be located in its center of mass Ri. The energy of a molecule consists of the
kinetic energy of each single atom, the potential energy of the intramolecular vibrations
Vintra, and its share of the intermolecular potential energy Viα

inter. It is common to share
the potential energy equally between interacting atoms9. The total energy reads20

Ei = ∑ 
α = 1

nat

1
2

miαv iα
2  + Vintra(r i1,r i2,r i3) + ∑ 

α = 1

nsite

Viα
inter  . (7)

Note that the sum of the kinetic energy (with the greek index) runs over the number of
atoms per molecule nat (i.e. 3 in the case of carbon dioxide), whereas the sum forming
the intermolecular contribution runs over the number of intermolecular interaction sites
per molecule nsite (i.e. 5 in the case of the two applied intermolecular interaction
models for carbon dioxide6,7). Taking into account the pair additivity of the intermole-
cular potential the heat current then reads

j = 
1
V

 ∑ 
i = 1

Nmol

Vi Ei + 
1
V

  ∑ 
i,j = 1

Nmol

    ∑ 
α,β = 1

nsite

 
1
2
 Rij(F iαjβ

inter⋅v iα)  ,

i <> j

(8)

where F iαjβ
inter is the force of atom i in molecule α on atom j in molecule β. This model

for the thermal conductivity yields large statistical errors. Alternatively, the formula for
rigid molecules10 can be applied.

The agreement with experiment is very good with the exception of the result for the
flexible model obtained by the [5s4p2d] potential at 300 K and ρ = 23 389 mol m–3.
However, the flexible model always shows huge statistical errors due to the strong
energy oscillations accompanying the vibrations. Hence, conclusions are difficult to
draw. Wang et al.21 emphasize that at the critical point the contribution of the inter-
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molecular potential becomes very important. Their results were obtained from none-
quilibrium molecular dynamics simulations, using an empirical Lennard–Jones poten-
tial and rigid molecules. The accuracy of their results is comparable to ours.

Figure 1 gives the time correlation functions of the heat flux vector for both models.
The flexible model shows the expected oscillations, being probably the origin of the
large statistical error. The dominating oscillation corresponds to the bending vibration.
As discussed in previous work7 the energy transfer between the vibrational and the
other (rotational and translational) degrees of freedom takes place on a time scale of
nanoseconds, whereas our simulations run only over 45 ps. This could mean that some
slow fluctuations corrupt the results in the flexible model.

Shear Viscosity

The shear viscosity describes the transport of momentum in a system. In order to de-
scribe the shear viscosity η it is helpful to define the quantity

Aη = ∑ 
i = 1

Nmol

Ri ⊗ Pi  , (9)

with Ri the center of mass coordinate and Pi the total momentum of molecule i. The ⊗
denotes the tensor product. The corresponding current is the pressure tensor

σ = −1
V

 A
.

η  , (10)

0.00                           0.20                           0.40                           0.60t, ps

 1.0

 0.5

 0.0

–0.5

tcf

FIG. 1
Normalized time correlation functions (tcf) of the heat flux vector for the flexible and the rigid
model at T = 300 K and density ρ = 23 389 mol m–3; flexible model (full line), rigid model (dashed
line)
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where V is the volume. The viscosity reads8

η = 
V

kBT
 ∫ 
0

∞

dt 〈σxy(t)σxy(0)〉  , (11)

where xy indicates the sum over the non-diagonal elements of the pressure tensor. As
mentioned above, two different general assumptions can be made. On one hand, the
total momentum Pi of a molecule can be considered to be located at the center of mass
Ri of the corresponding molecule. This yields a final expression for the pressure ten-
sor22

σ = −1
V

 





∑ 
i = 1

Nmol

MiVi ⊗ Vi + ∑ 
i,j = 1

Nmol

    ∑ 
α,β = 1

nsite

Rij ⊗ F iαjβ
inter







  .

j <> i

(12)

On the other hand, one can assume that the momentum pi,α of each atom is localized at
the coordinate r i,α of each atom itself. Hence, the pressure tensor reads22

σ = −1
V

 






 ∑ 
i = 1

Nmol

 ∑ 
α = 1

nat

miαv iα ⊗ v iα + ∑ 
i = 1

Nmol

 ∑ 
α = 1

nat

r iα ⊗ F iα
intra + ∑ 

i,j = 1

Nmol

    ∑ 
α,β = 1

nsite

 
1
2
 r iαjβ ⊗ F iαjβ

inter






  .

j <> i

(13)

0.20                         0.40                         0.60t, ps

 1.0

 0.5

 0.0

tcf

FIG. 2
Normalized time correlation functions (tcf) of the pressure tensor for the atomic and the molecular
model at T = 300 K and density ρ = 23 389 mol m–3; atomic model (full line), molecular model
(dashed line)
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The results of the simulation show no conclusive pattern. They are in general slightly
larger than the experimental values, but the deviations are roughly within the statistical
errors. Maréchal and Ryckaert9 showed that the atomic and the molecular model lead to
different autocorrelation functions but yield the same value for the shear viscosity. This
is confirmed by our results. Figure 2 shows the difference in the time correlation func-
tions. The atomic model shows an oscillation with exactly the frequency of the symme-
tric vibration of the carbon dioxide monomer. It can be shown from Eq. (13) that in the
second sum, taking into account the intramolecular forces, the bending and the asym-
metric stretching vibration do not contribute. Similarly, as for the conductivity, the
long-time fluctuations of the vibrations could influence the results in the atomic model.

CONCLUSIONS

In this paper we have successfully applied two ab initio potentials to molecular dy-
namics simulations in order to calculate transport properties of carbon dioxide in the
supercritical state from pure theory. The results show fair agreement with experiment.
The self diffusion is in general too small but reproduces the correct temperature and
density dependence. The thermal conductivity and the shear viscosity agree in general
with the experimental values within the quite large statistical errors. The accuracy of
these quantities allows for a prediction where experiments are not available. To im-
prove the results the statistical errors should be reduced, which means still longer runs
with more molecules.
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